Tetrahedron Letters No.19, pp. 1381-1384, 1965. Pergamon Press Ltd. Printed in Great Britain.

STUDIES IN FURAN CHEMISTRY (1). ROTATIONAL ISOMERISM

R. Grigg and M. V. Sargent

The University Chemical Laboratory, Cambridge, England.

J. A. Knight

The Chemistry Department, The University,
Nottingham, England.

(Received 15 March 1965)

The Raman and infrared spectra of furfural show two carbonyl absorptions. Early workers (2) ascribed the doublet to molecular association. More recent cryoscopic and spectral investigations (3,4) have shown that the two carbonyl absorptions are due to the existence of rotational isomers (I-II). Infrared studies on pyrrole-2-esters have shown that these compounds exhibit rotational isomerism (5,6). 2-Formylthiophen has also been reported (7) to have two carbonyl absorptions.

TABLE
Carbonyl Absorptions of Substituted Furans
Substituents

2	3	4	5	Carbonyl	Stretch	ing	Frequ	uencies	(cm. ⁻¹)
CHO	H	H	Мэ		1686			1710	
CHO	H	H	I		1694			1719	
CHO	H	H	Br		1691			1718	
СНО	H	H	NO2		1704	1716	sh	1722	
^{сос} 6 ^Н 5	H	Н	H		1654			1660	
COC ₆ H ₅	H	H	I		1650			1659	
COC ₆ H ₅	H	H	Br		1653			1561	
сосн3	H	Н	H		1689			1717	
CO ₂ Me	H	H	Me		1730			1742	
CO2Me	H	H	CH ₂ Cl		1 7 29			1743	
CO ₂ Et	H	H	CH ₂ Cl		1726			1741	
CO ² Me	H	H	I		1735			1751	
CO ₂ Me	H	H	Br		1723			1736	
CO2Me	Me	H	Br		1721			1738	
CO ₂ iiie	H	Br	Ne		1730			1744	
e اللو CO	H	i-Pr	\mathtt{Br}		1726			1741	

No. 19 1383

The recent report by Forsen and his co-workers (8) that the presence of two rotational isomers can be detected in the n.m.r. spectrum of furfural at -80°, prompts us to publish our preliminary observations on the infrared spectra of a series of furans with carbonyl substituents at the 2-position. All of these furans exhibited two carbonyl absorptions in carbon tetrachloride solution (Table), and dilution studies on several of these furans indicates that the relative intensities of the two carbonyl absorptions are concentration dependent. Studies in chloroform and carbon disalphide have shown that the relative intensities of the two darbonyl absorptions are also solvent dependent. The solvent and concentration dependence of the carbonyl absorptions is in agreement with the earlier observations on furfural (2-4).

We suggest our data indicate the presence of rotational isomerism in these compounds. Studies are in progress to provide further evidence on this point.

REFERENCES

- R. Grigg, J. A. Knight and M. V. Sargent, Fart I,
 J. Chem. Soc., in the press.
- P. Mirone, Atti Accad. nazl. Lincei, Rend. Classe sci.
 fis. mat. e nat., 16. 483, (1954).
- G. Allen and H. J. Bernstein, <u>Canad. J. Chem.</u>, <u>33</u>, 1055, (1955).

1384 No.19

4. N. Claverie, C. Garrigou-Lagrange, and
J. Domingues Dos Santos, J. Chim. Phys., 59,
1046, (1962).

- 5. R. Grigg, J. Chem. Soc., in the press.
- R. A. Jones and A. G. Woritz, <u>Spectrochim. Acta</u>,
 21, 295, (1965).
- 7. P. Chiorbili and A. M. Drusiani, Atti Accad. natzl. Lincei Rend. Classe sci. fis. mat. e nat., 12, 309, (1952).
- 8. S. Forsen, B. Akermark, and T. Alm, <u>Acta Chem. Scand.</u>, <u>18</u>, 2313, (1964).